Topological recursion on the Bessel curve

نویسندگان

  • Norman Do
  • Paul Norbury
چکیده

The Witten–Kontsevich theorem states that a certain generating function for intersection numbers on the moduli space of stable curves is a tau-function for the KdV integrable hierarchy. This generating function can be recovered via the topological recursion applied to the Airy curve x = 1 2 y 2. In this paper, we consider the topological recursion applied to the irregular spectral curve xy2 = 2 , which we call the Bessel curve. We prove that the associated partition function is also a KdV tau-function, which satisfies Virasoro constraints, a cut-and-join type recursion, and a quantum curve equation. Together, the Airy and Bessel curves govern the local behaviour of all spectral curves with simple branch points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Spectral Curves for Meromorphic Higgs Bundles through Topological Recursion

A geometric quantization using the topological recursion is established for the compactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization, the Hitchin spectral curve of a rank 2 meromorphic Higgs bundle on the base curve corresponds to a quantum curve, which is a Rees D-module on the base. The topological recursion then gives an all-order asymptotic ...

متن کامل

Topological Recursion for Irregular Spectral Curves

We study topological recursion on the irregular spectral curve xy2 − xy + 1 = 0, which produces a weighted count of dessins d’enfant. This analysis is then applied to topological recursion on the spectral curve xy2 = 1, which takes the place of the Airy curve x = y2 to describe asymptotic behaviour of enumerative problems associated to irregular spectral curves. In particular, we calculate all ...

متن کامل

Quantum Curves and Topological Recursion

This is a survey article describing the relationship between quantum curves and topological recursion. A quantum curve is a Schrödinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schrödinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed...

متن کامل

Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames

In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

متن کامل

A Proof of a Recursion for Bessel Moments

We provide a proof of a conjecture in [2] on the existence and form of linear recursions for moments of powers of the Bessel function K0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016